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Abstract

The hp version of the finite element method (hp-FEM) combined with adaptive mesh refinement is a
particularly efficient method for solving partial differential equations because it can achieve a convergence
rate that is exponential in the number of degrees of freedom. hp-FEM allows for refinement in both the
element size, h, and the polynomial degree, p. Like adaptive refinement for the h version of the finite
element method, a posteriori error estimates can be used to determine where the mesh needs to be refined,
but a single error estimate can not simultaneously determine whether it is better to do the refinement by h
or by p. Several strategies for making this determination have been proposed over the years. In this paper
we summarize these strategies and present the results of a numerical experiment to study the convergence
properties of these strategies.
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1 Introduction

The numerical solution of partial differential equations (PDEs) is the most compute-intensive part of a wide
range of scientific and engineering applications. Consequently the development and application of faster and
more accurate methods for solving partial differential equations has received much attention in the past fifty
years. Many of the applications at the cutting edge of research are extraordinarily challenging. For these
problems it is necessary to allocate computing resources in an optimal way in order to have any chance at
solving the problem. Determining the best grid and approximation space on which to compute the solution
is a central concern in this regard. Unfortunately, it is rarely possible to determine an optimal grid in
advance. Thus, developing self-adaptive techniques which lead to optimal resource allocation is critical for
future progress in many fields.

Self-adaptive methods have been studied for over 30 years now. They are often cast in the context of
finite element methods, where the domain of the PDE is partitioned into a mesh consisting of a number of
elements (in two dimensions, usually triangles or rectangles), and the approximate solution is a polynomial
over each element. Most of the work has focused on h-adaptive methods. In these methods, the mesh size,
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h, is adapted locally by means of a local error estimator with the goal of placing the smallest elements in the
areas where they will do the most good. In particular, elements that have a large error estimate get refined
so that ultimately the error estimates, and presumably the error, are approximately equal over all elements.
h-adaptive methods are quite well understood now, and are beginning to be used in practice.

Recently, the research community has begun to focus more attention on hp-adaptive methods. In these
methods, one not only locally adapts the size of the mesh, but also the degree of the polynomials, p. The
attraction of hp-adaptivity is that the error converges at an exponential rate in the number of degrees of
freedom, as opposed to a polynomial rate for fixed p. Much of the theoretical work showing the advantages
of hp-adaptive methods was done in the 1980’s, but it wasn’t until the 1990’s that practical implementation
began to be studied. The new complication is that the local error estimator is no longer sufficient to guide
the adaptivity. It tells you which elements should be refined, but it does not indicate whether it is better to
refine the element by h or by p. A method for making that determination is called an hp-adaptive strategy.
A number of strategies have been proposed, but it is not clear which ones perform best under different
situations, or even if any of the strategies are good enough to be used as a general purpose solver. In this
paper we present an experimental comparison of several hp-adaptive strategies.

Any study of this type is necessarily limited in scope. The comparison will be restricted to steady-state
linear elliptic partial differential equations on bounded domains in two dimensions with Dirichlet, natural
or mixed boundary conditions. The standard Galerkin finite element method will be used with the space
of continuous piecewise polynomial functions over triangles that are refined by the newest node bisection
method.

The remainder of the paper is organized as follows. In Section 2 we define the equation to be solved, present
the finite element method, and give some a priori error estimates. In Section 3 we give the details of the
hp-adaptive finite element algorithm used in the experiments. Section 4 defines the hp-adaptive strategies to
be compared. Section 5 contains the results of the experiments. Finally, we draw our conclusions in Section
6.

2 The Finite Element Method

We consider the elliptic partial differential equation

Lu = − ∂

∂x

(
p(x, y)

∂u

∂x

)
− ∂

∂y

(
q(x, y)

∂u

∂y

)
+ r(x, y)u = f(x, y) in Ω (1)

u = gD(x, y) on ∂ΩD (2)

Bu = p(x, y)
∂u

∂x

∂y

∂s
− q(x, y)

∂u

∂y

∂x

∂s
+ c(x, y)u = gN (x, y) on ∂ΩN (3)

where Ω is a bounded, connected, polygonal, open region in R2 with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩
∂ΩN = ∅. Differentiation with respect to s is with respect to a counterclockwise parameterization of the
boundary (x(s), y(s)) with ‖(dx/ds dy/ds)‖ = 1. If c = 0 Equation 3 is the natural boundary condition.
If, in addition, p = q = 1 or ∂ΩN consists of line segments that are parallel to the axes, Equation 3 is
the Neumann boundary condition. We assume the data in Equations 1-3 satisfy the usual ellipticity and
regularity assumptions. In one of the test problems, we extend the equation to a system of two equations
containing a cross derivative term ∂2u/∂x∂y, and in another test problem we include first order derivative
terms.
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As usual, define the space L2 by

L2(Ω) = {v(x, y) :
∫∫
Ω

v2 dx dy < ∞}

with inner product

〈u, v〉2 =
∫∫
Ω

uv dx dy

and norm
||v||22 = 〈v, v〉2.

We denote by Hm(Ω) the usual Sobolov spaces

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ m}

where

Dαv =
∂|α|v

∂α1x∂α2y
, α = (α1, α2), αi ∈ N, |α| = α1 + α2.

The Sobolov spaces have inner products

〈u, v〉Hm(Ω) =
∫∫
Ω

∑
|α|≤m

DαuDαv dx dy

and norms
||v||2Hm(Ω) = 〈v, v〉Hm(Ω).

We will also refer to the seminorm |v|Hm(Ω) where the sum is over |α| = m.
Let Hm

0 (Ω) = {v ∈ Hm(Ω) : v = 0 on ∂ΩD}. Let ũD be a lift function satisfying the Dirichlet boundary
conditions in Equation 2 and define the affine space ũD +H1

0 (Ω) = {ũD +v : v ∈ H1
0 (Ω)}. Define the bilinear

form
B(u, v) =

∫∫
Ω

p
∂u

∂x

∂v

∂x
+ q

∂u

∂y

∂v

∂y
+ ruv dx dy +

∫
∂ΩN

cuv ds

and the linear form
L(v) =

∫∫
Ω

fv dx dy +
∫

∂ΩN

gNv ds

Then the variational form of the problem is to find the unique u ∈ ũD + H1
0 (Ω) that satisfies

B(u, v) = L(v) ∀v ∈ H1
0 (Ω).

The energy norm of v ∈ H1
0 is defined by ||v||2E(Ω) = B(v, v).

The finite element space is defined by partitioning Ω into a grid (or mesh), Ghp, consisting of a set of NT

triangular elements, {Ti}NT

i=1 with Ω̄ = ∪NT
i=1T̄i. If a vertex of a triangle is contained in the interior of an

edge of another triangle, it is called a hanging node. We only consider compatible grids with no hanging
nodes, i.e. T̄i∩ T̄j , i 6= j, is either empty, a common edge, or a common vertex. The diameter of the element
is denoted hi. With each element we associate an integer degree pi ≥ 1. The finite element space Vhp is
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the space of continuous piecewise polynomial functions on Ω such that over element Ti it is a polynomial
of degree pi. The degree of an edge is determined by applying either a minimum rule or a maximum rule
over Ghp in which the edge is assigned the minimum or maximum of the degrees of the adjacent elements,
respectively.

The finite element solution is the unique function uhp ∈ ũD + Vhp that satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp.

The error is defined by ehp = u− uhp.
The finite element solution is expressed as a linear combination of basis functions {φi}N

i=1 that span
ũD + Vhp,

uhp =
N∑

i=1

αiφi(x, y)

N is called the number of degrees of freedom. For high order elements, there are a number of basis sets used
in practice. A number of the hp strategies of Section 4 rely on the basis being a p-hierarchical basis in which
the basis functions for a space of degree p are a subset of the basis functions for a space of degree p + 1.
In the results of Section 5 the p-hierarchical basis of Szabo and Babuška [33], which is based on Legendre
polynomials, is used.

The discrete form of the problem is a linear system of algebraic equations

Ax = b (4)

where the matrix A is given by Aij = B(φi, φj) and the right hand side is given by bi = L(φi).
If h and p are uniform over the grid, u ∈ Hm(Ω), and the other usual assumptions are met, then the a

priori error bound is [6, 7]

||ehp||H1(Ω) ≤ C
hµ

pm−1
||u||Hm(Ω) (5)

where µ = min(p, m− 1) and C is a constant that is independent of h, p and u, but depends on m.
With a suitably chosen hp mesh, and other typical assumptions, the error can be shown [14] to converge

exponentially in the number of degrees of freedom,

||ehp||H1(Ω) ≤ C1e
−C2N1/3

(6)

for some C1 and C2 > 0 independent of N .

3 hp-Adaptive Refinement Algorithm

One basic form of an hp-adaptive algorithm is given in Figure 1. There are a number of approaches to
each of the steps of the algorithm. For example, how is an element h-refined? How is an element p-refined?
What error indicator is used to guide adaptive refinement? When is the program terminated? How is an
element coarsened? How do you determine which elements should be coarsened? How do you determine
which elements should be refined? How much refinement should occur before the linear system is formed
and solved again? Should an element be refined by h or p?

Complete coverage of the possible answers to these questions is beyond the scope of this paper. We
will focus on the choices used for the results given in Section 5, and in some cases briefly mention other
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begin with a very coarse grid
form and solve the linear system
repeat

determine which elements to coarsen and whether to coarsen by h or p
coarsen elements
repeat

determine which elements to refine and whether to refine by h or p
refine elements

until some criterion on amount of refinement is met
form and solve the linear system

until some termination criterion is met

Figure 1: Basic form of an hp-adaptive algorithm.

possibilities or give a reference, but this is not intended to be exhaustive. Note that some of the hp strategies
in Section 4 require a different choice, or even a modification of the basic algorithm. These exceptions will
be noted in Section 4.

There are several ways to refine triangles [19]. In this paper, the newest node bisection method [20] is
used. Briefly, a parent triangle is h-refined by connecting one of the vertices to the midpoint of the opposite
side to form two new child triangles. The most recently created vertex is chosen as the vertex to use in this
bisection. Triangles are always refined in pairs (except when the edge to be refined is on the boundary) to
maintain compatibility of the grid. This may require first refining a neighbor triangle to create the second
triangle of the pair. The h-refinement level, li, of a triangle Ti is one more than the h-refinement level of
the parent, with level 0 assigned to the triangles of the initial coarse grid. p-refinement is fairly universally
accepted as increasing the degree of the element by one, followed by enforcing either the minimum rule or
maximum rule for the edges. We will use the minimum rule.

Adaptive refinement is guided by a local a posteriori error indicator computed for each element. There
are several choices of error indicators; see for example [2, 34]. For this paper, the error indicator for element
Ti is given by solving a local Neumann residual problem:

Lei = f − Luhp in Ti (7)
ei = 0 on ∂Ti ∩ ∂ΩD (8)

Bei = gN − Buhp on ∂Ti ∩ ∂ΩN (9)

Bei = −1
2

[
∂uhp

∂n

]
on (∂Ti \ ∂ΩD) \ ∂ΩN (10)

where L, B, f , gN , ∂ΩD, and ∂ΩN are defined in Equations 1-3,
[

∂uhp

∂n

]
is the jump in the outward normal

derivative of uhp across the element boundary, including the coefficients of the natural boundary conditions,
and in Equation 10 B is modified by setting c(x, y) = 0. If the degree of Ti is pi, the approximate solution,
ei,hp of Equations 7-10 is computed using the hierarchical bases of exact degree pi + 1. The error indicator
for element Ti is then given by

ηi = ||ei,hp||E(Ti)
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A global energy norm error estimate is given by

η =

(
NT∑
i=1

η2
i

)1/2

.

One criterion for program termination is that η be smaller than some prescribed error tolerance τ , or,
to base it on the relative error rather than the absolute error, η < τ ||uhp||E(Ω). Other possibilities are
to terminate when some quantity, such as number of elements, number of degrees of freedom, amount of
memory, amount of computation time, etc., is reached, or combinations of criteria. In this paper, the primary
termination criterion is a relative error tolerance, with number of degrees of freedom as a secondary criterion.

Coarsening of elements may be performed to reverse bad decisions about what refinements to perform,
or to allow the grid to follow the behavior of the solution in a time dependent problem. Elements are
h-coarsened by reversing the h-refinement, i.e., joining the child triangles back together to form the parent
triangle. p-coarsening means decreasing the degree of the element by one, and enforcing the minimum or
maximum rule for the edges. For steady state problems, one choice of which elements to coarsen is the
empty set, i.e., don’t perform coarsening. Other than that choice, the most common approach is to coarsen
elements that have a sufficiently small error indicator, subject to any requirements for compatibility of the
grid. In the numerical results of this paper, an element is coarsened if ηi < maxi ηi/100. The value 100 is
arbitrary.

The elements that are refined are usually those that have a sufficiently large error indicator. Perhaps the
most common approach is to refine those with an error indicator that is larger than some fraction, typically
between 1/4 and 1/2, of the maximum error indicator. Another approach, which is used in this paper, is
to refine those with ηi > τ ||uhp||E(Ω)/

√
NT . Note that if every element had ηi = τ ||uhp||E(Ω)/

√
NT then

η/||uhp||E(Ω) = τ , hence the
√

NT factor.
There are many ways to determine how much refinement to do before forming and solving the linear

system. One could refine until the global error estimate has been reduced by some factor, such as 1/2
or 1/4, or one could refine until some quantity, e.g. number of elements or degrees of freedom, has been
increased by some factor, such as 2 or 4. Both of these require that reasonable error indicators can be
computed on the child elements. The approach taken in this paper is to perform the refine loop once. The
downside of this approach is that it requires more passes through the outer loop, which means forming
and solving the linear system more times. But for the purpose of this paper, which is to determine the
convergence rate of various hp-adaptive strategies with respect to number of degrees of freedom, the excess
computation time is not important.

The method for determining whether an element should be refined by h or by p is called an hp-adaptive
strategy. Several strategies have been proposed over the years. Many of them will be described in the next
section.

4 The hp-Adaptive Strategies

In this section, the hp-adaptive strategies that have been proposed in the literature are briefly described.
For brevity, many of the details have been omitted. For a detailed description of the strategies, see [23] or
[22]. In some cases, these strategies were developed in the context of 1D problems, rectangular elements, or
other settings that are not fully compatible with the context of this paper. In those cases, the strategy is
appropriately modified for 2D elliptic PDEs and newest node bisection of triangles.
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4.1 Use of a priori Knowledge of Solution Regularity

It is well known that for smooth solutions p-refinement will produce an exponential rate of convergence, but
near singularities p-refinement is less effective than h-refinement. This is a consequence of the a priori error
bound in Equation 5. For this reason, many of the hp strategies use h-refinement in areas where the solution
is irregular (i.e., locally fails to be in Hm for some finite m, also called nonsmooth) or nearly irregular, and
p-refinement elsewhere. The simplest strategy is to use any a priori knowledge about irregularities. An
hp-adaptive strategy of this type was presented by Ainsworth and Senior [4]. In this approach they simply
flag vertices in the initial mesh as being possible trouble spots. During refinement an element is refined by
h if it contains a vertex that is so flagged, and by p otherwise. We will refer to this strategy by the name
APRIORI.

4.2 Estimate Regularity Using Smaller p Estimates

Süli, Houston and Schwab [32] presented a strategy based on Equation 5 and an estimate of the convergence
rate in p using error estimates based on pi − 2 and pi − 1. We will refer to this strategy as PRIOR2P.

Suppose the error estimate in Equation 5 holds on individual elements and that the inequality is an
approximate equality. Let ηi,pi−2 and ηi,pi−1 be a posteriori error estimates for partial approximate solutions
over triangle Ti using the bases up to degree pi − 2 and pi − 1, respectively. Then

ηi,pi−1

ηi,pi−2
≈
(

pi − 1
pi − 2

)−(mi−1)

and thus the regularity is estimated by

mi ≈ 1− log(ηi,pi−1/ηi,pi−2)
log((pi − 1)/(pi − 2))

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.

4.3 Type parameter

Gui and Babuška [13] presented an hp-adaptive strategy using what they call a type parameter, γ. This
strategy is also used by Adjerid, Aiffa and Flaherty [1]. We will refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi and ηi,pi−1, define

R(Ti) =

{
ηi,pi

ηi,pi−1
ηi,pi−1 6= 0

0 ηi,pi−1 = 0

By convention, ηi,0 = 0, which forces p-refinement if pi = 1.
R is used to assess the perceived solution smoothness. Given the type parameter, 0 ≤ γ < ∞, element

Ti is said to be of h-type if R(Ti) > γ, and of p-type if R(Ti) ≤ γ. If element Ti is selected for refinement,
then refine it by h-refinement if it is of h-type and p-refinement if it is of p-type. Note that γ = 0 gives pure
h-refinement and γ = ∞ gives pure p-refinement.

For the results of Section 5, we use γ = 0.3 if the solution has a singularity, and γ = 0.6 otherwise. 1

1The value for this parameter, and the parameters of the other strategies, was determined by a preliminary experiment to
determine a single value (or possibly two values dependent on singularness) that generally works best, using a subset of the
test problems.
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4.4 Estimate Regularity Using Larger p Estimates

Another approach that estimates the regularity is given by Ainsworth and Senior [3]. This strategy uses
three error estimates based on spaces of degree pi + 1, pi + 2 and pi + 3, so we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the local Neumann residual error
estimate given by Equations 7-10 in which Equation 10 is replaced by

Bei = gi on (∂Ti \ ∂ΩD) \ ∂ΩN

where gi is an approximation of Bu that satisfies an equilibrium condition. This is the equilibrated residual
error estimator in [2].

The local problem is solved on element Ti three times using the spaces of degree pi + q, q = 1, 2, 3, to
obtain error estimates ei,q. In contrast to the local Neumann residual error estimate, the whole space over
Ti is used, not just the p-hierarchical bases of degree greater than pi. These approximations to the error
converge to the true solution of the residual problem at the same rate the approximate solution converges
to the true solution of Equations 1-3, i.e.

||ei − ei,q||E(Ti) ≈ C(pi + q)−α

where C and α are positive constants that are independent of q but depend on Ti. Using the Galerkin
orthogonality

||ei − ei,q||2E(Ti)
= ||ei||2E(Ti)

− ||ei,q||2E(Ti)

this can be rewritten
||ei||2E(Ti)

− ||ei,q||2E(Ti)
≈ C2(pi + q)−2α.

We can compute ||ei,q||2E(Ti)
and pi + q for q = 1, 2, 3 from the approximate solutions, so the three constants

||ei||E(Ti), C and α can be approximated by fitting the data. Then, using the a priori error estimate in
Equation 5, the approximation of the local regularity is mi = 1 + α. Use p-refinement if pi ≤ mi − 1 and
h-refinement otherwise.

4.5 Texas 3 Step

The Texas 3 Step strategy [8, 24, 25] first performs h-refinement to get an intermediate grid, and follows
that with p-refinement to reduce the error to some given error tolerance, τ . We will refer to this strategy as
T3S. Note that for this strategy the basic form of the hp-adaptive algorithm is different than that in Figure
1.

The first step is to create an initial mesh with uniform p and nearly uniform h such that the solution
is in the asymptotic range of convergence in h. The second step is to perform adaptive h-refinement to
reach an intermediate error tolerance γτ where γ is a given parameter. In the references, γ is in the range
5− 10, usually 6 in the numerical results. This intermediate grid is created by computing a desired number
of children for each element Ti by a formula that is based on the a priori error estimate in Equation 5. The
discrete problem is then solved on the intermediate grid. The third step is to perform adaptive p-refinement
to reduce the error to the desired tolerance τ . Again, a formula is used to determine the new degree for
each element, p-refinement is performed to increase the degree of each element to the desired degree, and
the discrete problem is solved on the final grid.

The strategy of performing all the h-refinement in one step and all the p-refinement in one step is adequate
for low accuracy solutions (e.g. 1%), but is not likely to work well with high accuracy solution (e.g. 10−8
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relative error) [26]. We extend the Texas 3 Step strategy to high accuracy by cycling through steps 2 and 3
until the final tolerance τfinal is met. τ in the algorithm above is now the factor by which one cycle of steps
2 and 3 should reduce the error. Toward this end, before step 2 the error estimate η0 is computed for the
current grid. The final (for this cycle) and intermediate targets are now given by ηT = τη0 and ηI = γηT .
In the results of Section 5 we use τ = 0.1 and γ = 6.

4.6 Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S that is more like the algorithm
of Figure 1. The difference from T3S is that instead of predicting the number of refinements needed to reduce
the error to the next target, the usual adaptive refinement is performed until the target is reached. Thus in
step 2 all elements with an error indicator larger than ηI/

√
N0 are h-refined. The discrete problem is solved

and the new error estimate compared to ηI . This is repeated until the error estimate is smaller than ηI .
Step 3 is similar except adaptive p-refinement is performed and the target is ηT . Steps 2 and 3 are repeated
until the final error tolerance is achieved.

4.7 Nonlinear Programming

Patra and Gupta [27] proposed a strategy for hp mesh design using nonlinear programming. We refer to
this strategy as NLP. They presented it in the context of quadrilateral elements with one level of hanging
nodes, i.e., an element edge is allowed to have at most one hanging node. Here it is modified slightly for
newest node bisection of triangles with no hanging nodes. This is another approach that does not strictly
follow the algorithm in Figure 1.

Given a current grid with triangles {Ti}, degrees {pi}, h-refinement levels {li}, and error estimates {ηi},
the object is to determine new mesh parameters {p̂i} and {l̂i}, i = 1..NT , by solving an optimization problem
which can be informally stated as: minimize the number of degrees of freedom subject to the error being
less than a given tolerance and other constraints. Computationally, the square of the error is approximated
by
∑NT

i=0 η̂2
i where η̂i is an estimate of the error in the refined grid over the region covered by Ti, and the

number of degrees of freedom over the children of Ti is 2l̂i−li p̂2
i /2. Thus the optimization problem is

minimize
{l̂i}, {p̂i}

NT∑
i=1

2l̂i−li
p̂2

i

2
(11)

s.t.
NT∑
i=1

η̂2
i < τ̂2 (12)

l̂j − 1 ≤ l̂i ≤ l̂j + 1 ∀j such that Tj shares an edge with Ti (13)

0 ≤ l̂i ≤ lmax (14)
1 ≤ p̂i ≤ pmax (15)

li −∆ldec ≤ l̂i ≤ li + ∆linc (16)
pi −∆pdec ≤ p̂i ≤ pi + ∆pinc (17)

where τ̂ is the error tolerance for this refinement phase. Equation 13 is a necessary condition for compatibility
of the grid (in [27] it enforces one level of hanging nodes). Equation 14 insures that coarsening does not go
beyond the initial grid, and that the refinement level of an element does not exceed a prescribed limit lmax.
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Similarly, Equation 15 insures that element degrees do not go below one or exceed a prescribed limit pmax.
Also, because many quantities are only approximate, it is wise to limit the amount of change that occurs to
any element during one phase of refinement. Equations 16 and 17 restrict the amount of change that can
occur at one time.

Since the l̂i and p̂i are naturally integers, the optimization problem is a mixed integer nonlinear program,
which is known to be NP-hard. To make the problem tractable, the integer requirement is dropped to give
a nonlinear program which can be solved by one of several software packages. For the results in Section 5,
we used the program ALGENCAN 2 Version 2.2.1 [5, 9]. Following solution of the nonlinear program, the
l̂i and p̂i are rounded to the nearest integer.

4.8 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [17] proposed a strategy based on a prediction of what the error should be if the
solution is smooth. We call this strategy SMOOTH PRED.

When refining element Ti, assume the solution is locally smooth and that the optimal convergence rate is
obtained. If h-refinement is performed and the degree of Ti is pi, then the expected error on the two children
of Ti is reduced by a factor of

√
2

pi as indicated by the a priori error estimate of Equation 5. Thus if ηi

is the error estimate for Ti, predict the error estimate of the children to be γhηi/
√

2
pi where γh is a user

specified parameter. If p-refinement is performed on Ti, exponential convergence is expected, so the error
should be reduced by some constant factor γp ∈ (0, 1), i.e., the predicted error estimate is γpηi. When the
actual error estimate of a child becomes available, it is compared to the predicted error estimate. If the
error estimate is less than or equal to the predicted error estimate, then p-refinement is indicated for the
child. Otherwise, h-refinement is indicated since presumably the assumption of smoothness was wrong. For
the results in Section 5 we use γh = 2 and γp =

√
0.4.

4.9 Larger of h-Based and p-Based Error Indicators

In 1D, Schmidt and Siebert [29] proposed a strategy that uses two a posteriori error estimates to predict
whether h-refinement or p-refinement will reduce the error more. We extend this strategy to bisected triangles
and refer to it as H&P ERREST.

The local Neumann residual error estimate given by Equations 7-10 is actually an estimate of how much
the norm of the solution will change if Ti is p-refined. This is because the solution of the local problem is
estimated using the p-hierarchical bases that would be added if Ti is p-refined, so it is an estimate of the
actual change that would occur. Using the fact that the current space is a subspace of the refined space and
Galerkin orthogonality, it can be shown that

||u− ûhp||2 = ||u− uhp||2 − ||ûhp − uhp||2

where ûhp is the solution in the refined space. Thus the change in the solution indicates how much the error
will be reduced.

2The mention of specific products, trademarks, or brand names is for purposes of identification only. Such mention is not to
be interpreted in any way as an endorsement or certification of such products or brands by the National Institute of Standards
and Technology. All trademarks mentioned herein belong to their respective owners.
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A second error estimate for Ti can be computed by solving a local Dirichlet problem

Lei = f − Luhp in Ti ∪ Tmate
i (18)

ei = gD − uhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩD (19)

Bei = gN − Buhp on ∂(Ti ∪ Tmate
i ) ∩ ∂ΩN (20)

ei = 0 on
(
∂(Ti ∪ Tmate

i ) \ ∂ΩD

)
\ ∂ΩN (21)

where Tmate
i is the element that is refined along with Ti in the newest node bisection method [20]. The

solution to this problem is approximated by an h-refinement of the two elements using only the new basis
functions. The error estimate obtained by taking the norm of this approximate solution is actually an
estimate of how much the solution will change, or the error will be reduced, if h-refinement is performed.

Schmidt and Siebert divide the two error estimates by the associated increase in the number of degrees
of freedom to obtain an approximate error reduction per degree of freedom. In addition or instead, one
of the error estimates can be multiplied by a user specified constant to bias the refinement toward h- or
p-refinement. In the results of Section 5 the p-based error estimate is multiplied by 2.

The type of refinement that is used is the one that corresponds to the larger of the two modified error
estimates.

4.10 Legendre coefficient strategies

We consider two hp-adaptive strategies that are based on the coefficients in an expansion of the solution
in Legendre polynomials. In one dimension, the approximate solution in element Ti with degree pi can be
written

ui(x) =
pi∑

j=0

ajPj(x)

where Pj is the jth degree Legendre polynomial scaled to the interval of element Ti.
Mavriplis [16] estimates the decay rate of the coefficients by a least squares fit of the the last four coefficients

aj to Ce−σj . Elements are refined by p-refinement where σ > 1 and by h-refinement where σ ≤ 1. We refer
to this strategy as COEF DECAY.

Houston et al. [15] present an approach which uses the Legendre coefficients to estimate the regularity of
the solution. The regularity is estimated using the root test yielding

mi =
log
(

2pi+1
2a2

pi

)
2 log pi

.

If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi − 1 and h-refinement if pi > mi − 1. We
refer to this strategy as COEF ROOT.

Both Mavriplis and Houston et al. presented the strategies in the context of one dimension and use the
Legendre polynomials as the local basis so the coefficients are readily available. In [15] it is extended to 2D
for rectangular elements with a tensor product of Legendre polynomials, and the regularity is estimated in
each dimension separately, so the coefficients are still readily available. Eibner and Melenk [12] extended the
COEF DECAY strategy to quadrisected triangles with an orthogonal polynomial basis. In this study we are
using triangular elements which have a basis that is based on Legendre polynomials [33]. In this basis there
are 3 + max(j − 2, 0) basis functions of exact degree j over an element, so we don’t have a single Legendre
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polynomial coefficient to use. Instead, for the coefficients aj we use the `1 norm of the coefficients of the
degree j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 6=∅

|αk|

4.11 Reference Solution Strategies

Demkowicz and his collaborators developed an hp-adaptive strategy over a number of years, presented in
several papers and books, e.g. [10, 11, 28, 31]. We refer to this strategy as REFSOLN EDGE because it
relies on computing a reference solution and bases the refinement decisions on edge refinements. Note that
for this strategy the basic form of the hp-adaptive algorithm is different than that in Figure 1.

The algorithm is first presented for 1D elliptic problems. Given the current existing mesh, Gh,p, and
current solution, uh,p, a uniform refinement in both h and p is performed to obtain a fine mesh Gh/2,p+1.
The equation is solved on the fine mesh to obtain a reference solution uh/2,p+1.

The next step is to determine the optimal refinement of each element. This is done by considering a
p-refinement and all possible (bisection) h-refinements (i.e., all possible assignments of p to the two children
of an h-refinement) that give the same increase in the number of degrees of freedom as the p-refinement.
In 1D, this means that the sum of the degrees of the two children must be p + 1, resulting in a total of p
h-refinements and one p-refinement to be examined. For each possibility, the error decrease rate is computed
as

|uh/2,p+1 −Πhp,iuh/2,p+1|2H1(Ti)
− |uh/2,p+1 −Πnew,iuh/2,p+1|2H1(Ti)

Nnew −Nhp

where Πhp,iuh/2,p+1 is the projection-based interpolant of the reference solution in element Ti, and Πnew,i

is the projection onto the resulting elements from any one of the candidate refinements. The refinement
with the largest error decrease rate is selected as the optimal refinement. In the case of h-refinement, the
degrees may be increased further by a process known as following the biggest subelement error refinement
path, which is also used to determine the guaranteed element rate; see [10] for details.

Elements that have a guaranteed rate larger than 1/3 the maximum guaranteed rate are selected for
refinement; the factor 1/3 is arbitrary.

The 2D algorithm also begins by computing a reference solution on the globally hp-refined grid Gh/2,p+1.
Then for each edge in the grid, the choice between p- and h-refinement, the determination of the guaranteed
edge rate, and the selection of edges to refine are done exactly as in 1D, except that a weighted H1 seminorm
is used instead of the more natural H1/2 seminorm which is difficult to work with. In the case of bisected
triangles, we only consider edges that would be refined by the bisection of an existing triangle.

The h-refinement of edges determines the h-refinement of elements. It remains to determine the degree of
each element. As a starting point, element degrees are assigned to satisfy the minimum rule for edge degrees,
using the edge degrees determined in the previous step. Then the biggest subelement error refinement path
is followed to determine the guaranteed element rate and assignment of element degrees. We again refer to
[10] for details. Finally, the minimum rule for edge degrees is enforced.

A related, but simpler, approach was developed by Šoĺın et al. [30]. We refer to this strategy as REF-
SOLN ELEM since it also begins by computing the reference solution, but bases the refinement on elements.
The basic form of the hp-adaptive algorithm is different than that in Figure 1 for this strategy, also.

The local error estimate is given by the norm of the difference between the reference solution and the
current solution,

ηi = ||uh/2,p+1 − uh,p||H1(Ti)

12



and the elements with the largest error estimates are refined. If Ti is selected for refinement, let p0 =
b(pi + 1)/2c and consider the following options:

• p-refine Ti to degree pi + 1,

• p-refine Ti to degree pi + 2,

• h-refine Ti and consider all combinations of degrees p0, p0 + 1 and p0 + 2 in the children.

In all cases the minimum rule is used to determine edge degrees. In [30], quadrisection of triangles is used
leading to 83 options to consider. With bisection of triangles, there are only 11 options. Also, since the object
of dividing by two to get p0 is to make the increase in degrees of freedom from h-refinement comparable to
that of p-refinement, we use p0 = b(pi + 1)/

√
2c since there are only two children instead of four.

For each candidate, the standard H1 projection ΠH1(Ti)
candidate of uh/2,p+1 onto the corresponding space is

performed, and the projection error in the H1 norm, ζcandidate, is computed,

ζcandidate = ||uh/2,p+1 −ΠH1(Ti)
candidateuh/2,p+1||H1(Ti)

as well as the projection error of the projection onto Ti, ζi.
Let Ni be the number of degrees of freedom in the space corresponding to Ti, and Ncandidate the number

of degrees of freedom in the space corresponding to a candidate. After discarding candidates that seem to
be outliers, select the candidate that maximizes

log ζi − log ζcandidate

Ncandidate −Ni
(22)

Following the refinement that is indicated by the selected candidate, the minimum rule for edge degrees is
applied.

This algorithm can be modified slightly to bias the refinement towards or away from p refinement to
improve the performance. Given a parameter pbias, multiply the value from Equation 22 by it for all the
p-refinement candidates. pbias > 1 will bias the refinement toward doing p-refinement, and pbias < 1 will bias
the refinement toward doing h-refinement. For the results in Section 5 we use pbias = 2 for most problems,
and pbias = 4 for the analytic, mild wave front and both peak problems, which are the easiest problems.

5 Numerical Results

This section contains the results of a numerical experiment to compare the hp-adaptive strategies’ perfor-
mance on a suite of 21 test problems with various difficulties that adaptive refinement should locate. The
primary criteria for comparing the strategies is the convergence of the relative error in the energy norm as
a function of the number of degrees of freedom, N . The test problems and convergence results for each
problem are given in Section 5.1, and summary results for comparison of the strategies are given in Section
5.3. We also give some indication of the relative amount of time required to obtain the solution in Section
5.2.

The full details of the test problems can be found in the companion paper [21]. Here we just give a brief
description of each problem. Recall that Poisson’s equation is uxx + uyy = f(x, y) and Laplace’s equation is
Poisson’s equation with f = 0.

Each problem is solved with each hp strategy using the hp-adaptive algorithm of Section 3, except for
those strategies that dictate using a variation on that algorithm, as indicated in Section 4. To examine
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Figure 2: The 3-parameter least squares fit to the convergence data for a typical example.

the convergence of the error as a function of N , each problem is solved using each strategy several times
with different values of the termination tolerance τ . The relative energy norm of the error and N are
recorded at the end of each run to give a set of points for the convergence data. In most cases we used
τ = 0.1, 0.05, 0.02, 0.01, 0.005 . . . 2x10−8, 10−8, although some of the more difficult problems required
ending the sequence earlier.

In Section 5.1 we give convergence curves of all strategies on one graph for each problem as N vs. the
relative energy norm of the error on a log-log scale. The curves are an exponential least squares fit to the
data. According to Equation 6 the error should converge like AeBN1/3

. In the experiments, the data often
exhibits exponential convergence, but with a different exponent on N than 1/3. The curves are a least
squares fit to the form AeBNC

. This 3-parameter least squares fit will be the primary means of comparing
the performance of the strategies. Figure 2 illustrates the relationship between the 3-parameter least squares
fit (the curve) and the data points (the circles) in a typical example.

Space limitations restrict the presentation of the results to this one form in this paper. A technical report
[22] contains a more extensive presentation of the results. In particular, it has

• an image of an example grid for each strategy with each problem, as illustrated in Figure 3,

• the log-log convergence plot for each strategy with each problem, including the data points, 3-parameter
least squares fit, and a 2-parameter least squares fit where the exponent on N is set to 1/3,

• cube root of N vs. logarithm of error convergence plots for one problem (the curve is theoretically a
straight line with that scale),

• tables of the parameters obtained by the 3-parameter and 2-parameter least squares fits,

• tables ranking the methods according to the 3-parameter fit for each problem at low and high accuracy,
and
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Figure 3: Example image of a grid. The color indicates the degree of the polynomial over each element.

• tables with the factor, for each strategy, by which N is larger than the best strategy for each problem
at low and high accuracy.

These computations were performed using the adaptive finite element code PHAML Version 1.8.1 [18] on
a single processor. During the period of this investigation there were changes to the available hardware and
software, but we do not believe any of these changes would effect the outcome of these computations, except
in Section 5.2 where a consistent computational environment is used. The computers were 32-bit and 64-bit
x86-class computers operating under CentOS 5.x distributions of Linux. PHAML was compiled with the
Intel Fortran compiler.

5.1 Test Problems and Convergence Graphs

Analytic Solution. The analytic problem in [21] is Poisson’s equation on the unit square with Dirichlet
boundary conditions. The solution is the polynomial

24pxp(1− x)pyp(1− y)p

with p = 10. 24p is a normalization factor so that the L∞ norm is 1.0. For the APRIORI strategy, we choose
to always refine by p, i.e., it is just p-adaptive refinement.

Reentrant Corner, Nearly Straight. For elliptic partial differential equations, a reentrant (concave)
corner in the domain, with interior angle ω, causes a point singularity that behaves like rα where r is
the distance from the corner and α = π/ω. The larger ω is, the stronger the singularity. The reentrant
corner problems of the next five sections are Laplace’s equation with Dirichlet boundary conditions on
(−1, 1)× (−1, 1) with a section of angle 2π − ω removed. The solution is

rα sin(αθ)

where r =
√

x2 + y2 and θ = tan−1(y/x).
For the nearly straight reentrant corner, ω = π + .01. This is a very mild singularity. In all the reentrant

corner test problems, the APRIORI strategy refines by h if the element contains the origin and by p otherwise.
Reentrant Corner, Wide Angle. This is the reentrant corner problem with ω = 5π/4.
Reentrant Corner, L-Shaped Domain. The reentrant corner problem with ω = 3π/2 is the classic

“L domain” problem which is used as an example in many papers on adaptive grid refinement.
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Figure 4: Log-Log plot of the convergence of all strategies with the analytic problem.

Figure 5: Log-Log plot of the convergence of all strategies with the nearly straight reentrant corner problem.
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Figure 6: Log-Log plot of the convergence of all strategies with the wide angle reentrant corner problem.

Figure 7: Log-Log plot of the convergence of all strategies with the L-shaped domain problem.
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Figure 8: Log-Log plot of the convergence of all strategies with the narrow angle reentrant corner problem.

Reentrant Corner, Narrow Angle. This is the reentrant corner problem with ω = 7π/4.
Reentrant Corner, Slit. This is the reentrant corner problem with ω = 2π. This results in a domain

that has a slit along the positive x axis.
Linear Elasticity, Mode 1. The linear elasticity problem is a coupled system of two equations with

a mixed derivative in the coupling term and different coefficients on the second order x and y terms. The
domain is a square with a slit, as in the reentrant corner slit domain problem. The boundary conditions
are Dirichlet. For further details, see [21]. We consider two solutions, referred to as mode 1 and mode
2, by using different boundary conditions. Both solutions have a singularity at the origin, with the mode
1 solution having the stronger singularity. For both problems, the APRIORI strategy refines by h if the
element contains the origin and by p otherwise.

Linear Elasticity, Mode 2. This is the mode 2 solution of the linear elasticity problem.
Mild Peak. The peak problem contains a Gaussian peak in the interior of the domain. It is Poisson’s

equation on the unit square with Dirichlet boundary conditions. The solution is

e−α((x−xc)
2+(y−yc)

2)

where (xc, yc) is the location of the peak, and α determines the strength of the peak. For the easy form of
this problem, we use α = 1000 and (xc, yc) = (0.5, 0.5). The APRIORI strategy refines by h if the element
touches the center of the peak and by p otherwise.

Sharp Peak. This is the hard version of the peak problem with α = 100000 and (xc, yc) = (.51, .117).
Battery. The battery problem is from a model of heat conduction in a battery with nonhomogeneous

materials. It has piecewise constant coefficients and right hand side, and mixed boundary conditions on a
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Figure 9: Log-Log plot of the convergence of all strategies with the slit domain problem.

Figure 10: Log-Log plot of the convergence of all strategies with the mode 1 linear elasticity problem.
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Figure 11: Log-Log plot of the convergence of all strategies with the mode 2 linear elasticity problem.

Figure 12: Log-Log plot of the convergence of all strategies with the mild peak problem.
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Figure 13: Log-Log plot of the convergence of all strategies with the sharp peak problem.

rectangular domain. The solution has several point singularities in the interior of the domain where three
or more materials meet. See [21] for further details. The exact solution of this problem is not known, so the
error estimate η (Section 3) is used for the convergence results instead of the error. The APRIORI strategy
refines by h if the element touches any of the singularities, and by p otherwise.

Boundary Layer, Mild. The boundary layer problem is a convection-diffusion equation with first order
terms and Dirichlet boundary conditions on (−1, 1)× (−1, 1). The solution is

(1− e−(1−x)/ε)(1− e−(1−y)/ε) cos(π(x + y))

where ε controls the strength of the boundary layer. In the easy form of this problem we use ε = 10−1. In
the APRIORI strategy we refine by h if the element touches either of the boundaries with a boundary layer,
and by p otherwise.

Boundary Layer, Strong. For the hard version of the boundary layer problem we use ε = 10−3.
Oscillatory, Mild. The oscillatory problem contains several circular waves which get closer together as

you approach the origin. The PDE is a Helmholtz equation with Dirichlet boundary conditions on the unit
square. The solution is

sin(
1

α + r
)

where r =
√

x2 + y2. The number of oscillations, N , is determined by the parameter α = 1
Nπ . For the easy

form of this problem we use N = 10.5. For APRIORI, refine by h if the element touches the origin and by
p otherwise.

Oscillatory, Strong. For the strong version of the oscillatory problem we use N = 50.5.
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Figure 14: Log-Log plot of the convergence of all strategies with the battery problem.

Figure 15: Log-Log plot of the convergence of all strategies with the mild boundary layer problem.
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Figure 16: Log-Log plot of the convergence of all strategies with the strong boundary layer problem.

Figure 17: Log-Log plot of the convergence of all strategies with the mild oscillatory problem.
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Figure 18: Log-Log plot of the convergence of all strategies with the strong oscillatory problem.

Wave Front, Mild. The circular wave front problem is often used as an example in adaptive grid
refinement papers. It is Poisson’s equation with Dirichlet boundary conditions on the unit square. The
solution is

tan−1(α(r − r0))

where r =
√

(x− xc)2 + (y − yc)2. The location of the wave front is defined by a circle with radius r0 and
center (xc, yc). α determines the steepness of the wave front. In addition to the wave front, the solution
has a mild singularity at the center of the circle, if the center is located in the closure of the domain. For
the easy form of this problem we use α = 20, (xc, yc) = (−.05,−.05), and r0 = 0.7. The center is chosen
outside the domain so that only the wave front is a factor in the adaptivity, not the singularity. With all
the wave front problems, for the APRIORI strategy, refine by h if the element touches the circle that defines
the location of the wave front and has degree at least 3 (chosen arbitrarily, but works better than degree 1),
and by p otherwise.

Wave Front, Steep. In the hard version of the wave front problem the location of the wave front is the
same, but it is much steeper. The parameters are α = 1000, (xc, yc) = (−.05,−.05), and r0 = 0.7.

Wave Front, Asymmetric. The asymmetric wave front is similar to the steep wave front except the
wave front is not symmetric within the domain. The parameters are α = 1000, (xc, yc) = (1.5, .25), and
r0 = .92.

Singular Well. This is the wave front problem with the center of the circle placed at the center of the
domain and a relatively mild wave front, effectively creating a well with a mild singularity at the center.
α = 50, (xc, yc) = (.5, .5), and r0 = .25. For the APRIORI strategy, refine by h if the element touches the
circle that defines the location of the wave front and has degree at least 3, or touches the center of the circle,
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Figure 19: Log-Log plot of the convergence of all strategies with the mild wave front problem.

Figure 20: Log-Log plot of the convergence of all strategies with the steep wave front problem.
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Figure 21: Log-Log plot of the convergence of all strategies with the asymmetric wave front problem.

and by p otherwise.
Intersecting Interfaces. The intersecting interfaces problem has piecewise constant coefficients which

create a very strong singularity at the center of the domain and discontinuous derivatives along the x and
y axes. The boundary conditions are Dirichlet on the domain (−1, 1)× (−1, 1). For the APRIORI strategy,
refine by h if the element touches the origin and by p otherwise.

Multiple Difficulties. The multiple difficulties problem combines several of the difficulties of the other
problems into a single problem. It contains a reentrant corner point singularity, wave front, peak and
boundary layer. For the selected parameters, the peak falls on the wave front, and the wave front intersects
the boundary layer and point singularity. The parameters are:

• reentrant corner ω = 3π/2

• center of circle for wave front (0,−3/4)

• radius of circle for wave front 3/4

• strength of wave front α = 200

• center of peak (
√

5/4,−1/4)

• strength of peak α = 1000

• strength of boundary layer ε = 1/100

The APRIORI method refines by h in the same cases as it did in the individual problems.
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Figure 22: Log-Log plot of the convergence of all strategies with the singular well problem.

Figure 23: Log-Log plot of the convergence of all strategies with the intersecting interfaces problem.
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Figure 24: Log-Log plot of the convergence of all strategies with the multiple difficulties problem.

5.2 Computation Time

In the previous section we presented performance results for the hp-adaptive strategies on a number of
test problems in terms of error vs. the number of degrees of freedom. It would be interesting to also see
a comparison in terms of error vs. computation time. However, we do not believe we could perform a
fair comparison of that nature at this time for a number of reasons, not the least of which is that the
implementation of the strategies in PHAML emphasized correctness of the method and was not tuned for
optimal performance. Nevertheless, to satisfy one’s curiosity about computation time, we present timing
results for one problem, the mild peak problem at a tolerance of 10−6. These times should not be taken
too seriously; they should only be viewed as a rough estimate of the relative time required by each of the
strategies.

These computations were performed in single user mode on a single core of a Dell Latitude D630 with
the Intel Core 2 Duo processor T7700 operating under the CentOS 5.5 distribution of Linux with the 2.6.18
kernel. PHAML Version 1.8.1 was compiled with the Intel Fortran 95 compiler Version 11.1.072 using -O
for optimization.

The results are given in Table 1. The first column gives the total wall clock time (in seconds) spent in
refinement. There is some variation in the number of times each strategy went through the refine/solve
loop making it difficult to compare the time spent in a single refinement phase of the loop using only these
numbers. The second column gives the number of refine/solve loops, and the third gives the quotient of the
first two columns to obtain the average time spent in a refinement phase. These figures show pretty much
what one would expect a priori. Most of the strategies use between 0.035 and 0.111 seconds per refinement
phase, which, due to the considerations above, should be considered approximately equal in this context,
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strategy total time number of average time
in refinement ref/solve loops per refinement

(s.) (s./loop)
ALTERNATE 1.55 16 0.097
APRIORI 0.95 27 0.035
COEF DECAY 0.94 11 0.085
COEF ROOT 0.88 12 0.073
H&P ERREST 1.44 11 0.131
NEXT3P 7.09 11 0.645
NLP 3969.16 13 305.320
PRIOR2P 1.33 12 0.111
REFSOLN EDGE 29.38 19 1.546
REFSOLN ELEM 20.01 12 1.668
SMOOTH PRED 1.03 11 0.094
T3S 0.38 8 0.048
TYPEPARAM 1.08 15 0.072

Table 1: Wall clock time for the refinement phases of the solution of the mild peak problem with τ = 10−6,
the number of refine/solve loops, and the average time for a refinement phase of the loops.

roughly .07 seconds. The H&P ERREST strategy takes about twice as long, which makes sense because it
computes two error indicators instead of one. The NEXT3P strategy takes about ten times longer, which
makes sense because, not only is it computing three error indicators, but those error indicators are more
expensive than the basic error indicator because they use a higher polynomial degree. The two reference
solution strategies are roughly equal and take much longer than most strategies because they solve the
expensive reference solution. Finally, NLP is extremely expensive, taking about 5000 times as long as the
typical strategy because it has to solve the optimization problem.

5.3 Summary and Observations

In this section, we summarize the results in Section 5.1 to examine the relative performance of the strategies
in different situations. The test problems are grouped into six categories: easy problems, hard problems,
and singular problems at low accuracy and high accuracy. For low accuracy, which is typical in engineering
applications, we use 10−2, or 1% relative error, for most problems. For high accuracy, which is of interest
mathematically and useful in some scientific applications, we use 10−6 for most problems.

Tables 2–7 give a straightforward ranking of the strategies for each problem based on the 3-parameter
least squares fit. The four best strategies for each problem are highlighted in green, and the four worst in
red to make it easy to see which strategies are consistently good or bad in a given category.

29



strategy a
n
a
ly

ti
c

m
il
d

p
ea

k

m
il
d

b
o
u
n
d
a
ry

la
y
er

m
il
d

o
sc

il
la

to
ry

m
il
d

w
a
v
e

fr
o
n
t

ALTERNATE 11 13 11 12 12

APRIORI 4 3 13 1 6

COEF DECAY 6 12 6 9 5

COEF ROOT 7 9 8 13 10

H&P ERREST 9 6 1 8 2

NEXT3P 2 5 4 6 4

NLP 12 7 7 10 11

PRIOR2P 8 10 5 11 7

REFSOLN EDGE 1 1 3 3 1

REFSOLN ELEM 5 2 9 2 3

SMOOTH PRED 10 11 10 7 8

T3S 13 8 12 5 13

TYPEPARAM 3 4 2 4 9

Table 2: Low accuracy ranking of each strategy for
easy problems.
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ALTERNATE 9 2 12 10 11

APRIORI 11 13 1 11 10

COEF DECAY 5 10 9 5 7

COEF ROOT 7 11 10 9 9

H&P ERREST 8 9 8 6 4

NEXT3P 4 4 7 4 3

NLP 12 8 13 12 13

PRIOR2P 6 12 11 7 6

REFSOLN EDGE 1 1 4 1 1

REFSOLN ELEM 2 5 5 2 2

SMOOTH PRED 13 7 6 3 5

T3S 10 3 2 13 12

TYPEPARAM 3 6 3 8 8

Table 3: Low accuracy ranking of each strategy for
hard problems.
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ALTERNATE 12 13 12 12 13

APRIORI 1 2 13 1 8

COEF DECAY 8 12 5 8 7

COEF ROOT 6 10 8 9 9

H&P ERREST 13 8 11 13 11

NEXT3P 9 7 9 10 10

NLP 7 9 6 7 4

PRIOR2P 10 11 10 11 12

REFSOLN EDGE 4 4 2 3 2

REFSOLN ELEM 3 1 4 2 1

SMOOTH PRED 5 6 3 5 5

T3S 11 5 7 6 6

TYPEPARAM 2 3 1 4 3

Table 4: High accuracy ranking of each strategy for
easy problems.
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ALTERNATE 13 1 12 3 4

APRIORI 8 13 2 9 9

COEF DECAY 10 8 7 8 8

COEF ROOT 9 11 8 10 10

H&P ERREST 6 9 10 7 6

NEXT3P 7 4 9 11 11

NLP 5 12 13 13 13

PRIOR2P 11 10 11 12 12

REFSOLN EDGE 2 2 3 1 1

REFSOLN ELEM 1 3 4 2 2

SMOOTH PRED 12 5 6 6 7

T3S 4 7 1 5 5

TYPEPARAM 3 6 5 4 3

Table 5: High accuracy ranking of each strategy for
hard problems.
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ALTERNATE 11 11 11 12 12 12 11 10 12 12 5

APRIORI 10 9 5 3 3 2 8 5 6 2 10

COEF DECAY 3 1 1 2 2 3 3 4 5 3 8

COEF ROOT 5 2 3 4 5 5 4 12 10 4 12

H&P ERREST 1 3 7 8 8 8 5 1 3 11 2

NEXT3P 2 5 8 9 9 6 10 3 7 9 6

NLP 4 7 4 11 11 11 9 9 13 10 13
PRIOR2P 8 6 6 6 7 9 6 6 9 6 9

REFSOLN EDGE 6 4 2 1 1 1 1 11 1 1 1

REFSOLN ELEM 9 8 9 5 6 4 7 2 8 8 3

SMOOTH PRED 12 12 12 10 10 10 12 8 4 7 7

T3S 13 13 13 13 13 13 13 7 2 13 11

TYPEPARAM 7 10 10 7 4 7 2 13 11 5 4

Table 6: Low accuracy ranking of each strategy for singular problems.

The ranking of the strategies indicates which strategies did best, but it does not indicate how much better
one strategy is than another (or how close they are to being nearly the same). For this we can examine
the factor by which N for a particular strategy is larger than N for the best strategy. For each problem,
for each strategy compute the value of N that gives the desired accuracy according to the formula for the
3-parameter least squares fit, as illustrated in Figure 25. Let Nbest be the minimum such value over all the
strategies. For each strategy compute the factor by which N is larger than the best strategy, Nstrategy/Nbest.
For example, in Figure 25 the factor for ALTERNATE is 53730/7787 ≈ 6.90.

The factors are illustrated in Figures 26–31. Each circle represents the factor for one problem in the given
category. If there is a number at the top of the graph, it indicates the number of factors that are larger
than 10. The strategies that performed the best in that category have all the circles near the bottom of
the graph, as in REFSOLN EDGE, REFSOLN ELEM and TYPEPARAM in Figure 26. To the right of the
graph, the strategies are ranked according to the average of the factors for that category.

Based on the tables and figures in this section and Section 5.2, we make the following observations.

• REFSOLN EDGE and REFSOLN ELEM are the top two strategies in all categories except singular
problems at low accuracy where they are in the top 5 with factors less than 2. Also note that REF-
SOLN EDGE would have been the best strategy in that category if it had not performed poorly on
the battery problem. The two strategies are equally good with each of them having the better average
factor in three categories, and the largest ratio of their average factors being about 1.35. However, these
strategies are considerably more expensive than most strategies.
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ALTERNATE 13 12 12 12 12 11 12 10 9 12 5

APRIORI 1 1 1 3 2 2 2 3 6 1 12

COEF DECAY 7 7 7 7 8 8 8 7 7 3 8

COEF ROOT 4 6 6 6 7 10 6 12 10 6 9

H&P ERREST 8 9 9 10 10 7 9 1 12 11 7

NEXT3P 10 10 11 11 9 13 13 8 8 9 10

NLP 11 11 10 9 11 6 5 4 13 10 13

PRIOR2P 6 4 4 5 6 9 4 9 11 8 11

REFSOLN EDGE 3 3 2 1 1 1 1 11 1 2 1

REFSOLN ELEM 2 2 3 2 3 3 3 2 2 5 2

SMOOTH PRED 9 5 5 4 4 4 7 6 3 4 4

T3S 12 13 13 13 13 12 11 5 4 13 6

TYPEPARAM 5 8 8 8 5 5 10 13 5 7 3

Table 7: High accuracy ranking of each strategy for singular problems.
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Figure 25: Computation of the factor by which N for a particular strategy is larger than N for the best
strategy. In this illustration, for an accuracy of 10−6 the factor for ALTERNATE is 53730/7787 ≈ 6.90.

Figure 26: Factors by which N is larger than the best strategy for each easy problem at low accuracy. The
table contains the average over all problems in the category.
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Figure 27: Factors by which N is larger than the best strategy for each easy problem at high accuracy. The
table contains the average over all problems in the category.

Figure 28: Factors by which N is larger than the best strategy for each hard problem at low accuracy. The
table contains the average over all problems in the category.
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Figure 29: Factors by which N is larger than the best strategy for each hard problem at high accuracy. The
table contains the average over all problems in the category.

Figure 30: Factors by which N is larger than the best strategy for each singular problem at low accuracy.
The table contains the average over all problems in the category.
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Figure 31: Factors by which N is larger than the best strategy for each singular problem at high accuracy.
The table contains the average over all problems in the category.

• TYPEPARAM is the third best strategy in all categories of nonsingular problems, and is in the middle
of the pack for singular problems where it has an average factor of 2.26 for low accuracy and 3.27 for
high accuracy.

• SMOOTH PRED is in the top 5 in all categories at high accuracy, and is the third best strategy for
singular problems at high accuracy. But at low accuracy its average factors are in the middle of the
pack and it is in the bottom four for many problems.

• APRIORI performs very well on singular problems with known point singularities and three of the five
easy problems at both low and high accuracy. But it performs poorly on the hard problems, except for
the strong oscillatory problem, and very poorly with the boundary layer.

• NEXT3P performs very well on nonsingular problems at low accuracy and fairly well on singular prob-
lems at low accuracy, but it is a bit more expensive than most strategies. It is below the middle of the
pack at high accuracy with average factors around 5.

• T3S performs fairly well on nonsingular problems, but very poorly on singular problems where it has
the largest average factor at both low and high accuracy, and is the worst strategy on about half of the
singular problems.

• PRIOR2P performs poorly on nonsingular problems, but did very well on singular problems at low
accuracy and fairly well on singular problems at high accuracy.

• COEF DECAY is in the middle of the pack in all categories except for singular problems at low accuracy
where it has the smallest average factor and is in the top four for most problems.
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• H&P ERREST is in the middle of the pack in all categories except easy problems at high accuracy
where it performed poorly.

• COEF ROOT performed poorly on nonsingular problems and is in the middle of the pack on singular
problems.

• ALTERNATE performs very poorly in all categories, although it did well on a few of the hard problems.

• NLP performs poorly in most cases and is extremely expensive.

6 Conclusion and Future Work

In this paper we presented the results of a study of strategies for the hp-adaptive finite element method for
2D linear elliptic partial differential equations using newest node bisection of triangles. The hp-strategies are
methods for determining how to select between the different possibilities of h- and p-refinement. Thirteen
strategies were described and compared in a numerical experiment using 21 test problems. The primary
metric for comparison was the convergence of the relative energy norm of the error vs. the number of degrees
of freedom. A rough comparison of computation time was also presented, confirming the a priori expectations
of the relative expense of the strategies.

We found that the REFSOLN EDGE and REFSOLN ELEM strategies performed best overall, in con-
vergence, and are comparable to each other. However, they are considerably more expensive than other
viable strategies. For problems with known point singularities and no other significant features, APRIORI
appears to be the less expensive method of choice. For nonsingular problems, TYPEPARAM performs very
well and is quite inexpensive. Another inexpensive strategy that performed very well at high accuracy is
SMOOTH PRED. Most of the other strategies have their good and bad moments.

Since the determination of what strategies to include in this study, other strategies have come to our
attention or have come into existence. For future work we will extend the results of this study to include
additional strategies as they are discovered. Also, we hope to use the lessons learned from this study to
develop a better general purpose hp-strategy. For example, is it possible to get the excellent convergence
performance of the reference solution strategies without the expense of computing the reference solution
by combining some aspects of the reference solution strategies with some aspects of other strategies? Our
conclusion is that, at this time, there is still much opportunity for the development of a general purpose
hp-adaptive strategy that is both efficient and effective.

References

[1] S. Adjerid, M. Aiffa, and J.E. Flaherty, Computational methods for singularly perturbed systems, Singu-
lar Perturbation Concepts of Differential Equations (Providence) (J. Cronin and R.E. O’Malley, eds.),
AMS, 1998.

[2] M. Ainsworth and J. T. Oden, a posteriori error estimation in finite element analysis, John Wiley &
Sons, New York, 2000.

[3] M. Ainsworth and B. Senior, An adaptive refinement strategy for h-p finite element computations, Appl.
Numer. Math. 26 (1997), no. 1-2, 165–178.

37



[4] , hp-finite element procedures on non-uniform geometric meshes: adaptivity and constrained
approximation, Grid Generation and Adaptive Algorithms (New York) (M. W. Bern, J. E. Flaherty,
and M. Luskin, eds.), vol. 113, IMA Volumes in Mathematics and its Applications, Springer-Verlag,
1999, pp. 1–28.

[5] R. Andreani, E. G. Birgin, J. M. Martnez, and M. L. Schuverdt, On augmented Lagrangian methods
with general lower-level constraints, SIAM J. Optim. 18 (2007), 1286–1309.

[6] I. Babuška and M. Suri, The h-p version of the finite element method with quasiuniform meshes, RAIRO
Modél. Math. Anal. Numér. 21 (1987), 199–238.

[7] , The p- and h-p versions of the finite element method, an overview, Comput. Methods Appl.
Mech. Engrg. 80 (1990), 5–26.

[8] K. S. Bey, An hp adaptive discontinuous Galerkin method for hyperbolic conservation laws, Ph.D. thesis,
University of Texas at Austin, Austin, TX, 1994.

[9] E. G. Birgin, TANGO home page, http://www.ime.usp.br/~egbirgin/tango/.

[10] L. Demkowicz, Computing with hp-adaptive finite elements, Volume 1, One and two dimensional elliptic
and Maxwell problems, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[11] L. Demkowicz, W. Rachowicz, and Ph. Devloo, A fully automatic hp-adaptivity, J. Sci. Comput. 17
(2002), 127–155.

[12] T. Eibner and J. M. Melenk, An adaptive strategy for hp-FEM based on testing for analyticity, Comput.
Mech. 39 (2007), no. 5, 575–595.
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[15] P. Houston, B. Senior, and E. Süli, Sobolev regularity estimation for hp-adaptive finite element methods,
Numerical Mathematics and Advanced Appplications (Berlin) (F. Brezzi, A Buffa, S. Corsaro, and
A. Murli, eds.), Springer-Verlag, 2003, pp. 619–644.

[16] C. Mavriplis, Adaptive mesh strategies for the spectral element method, Comput. Methods Appl. Mech.
Engrg. 116 (1994), 77–86.

[17] J. M. Melenk and B. I. Wohlmuth, On residual-based a-posteriori error estimation in hp-FEM, Adv.
Comput. Math. 15 (2001), 311–331.

[18] W. F. Mitchell, PHAML home page, http://math.nist.gov/phaml.

[19] , A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Soft-
ware 15 (1989), 326–347.

[20] , Adaptive refinement for arbitrary finite element spaces with hierarchical bases, J. Comput.
Appl. Math. 36 (1991), 65–78.

38

http://www.ime.usp.br/~egbirgin/tango/
http://math.nist.gov/phaml


[21] , A collection of 2D elliptic problems for testing adaptive algorithms, NISTIR 7668, National
Institute of Standards and Technology, 2010, also submitted to this journal.

[22] W. F. Mitchell and M. A. McClain, A comparison of hp-adaptive strategies for elliptic partial differential
equations (long version), NISTIR 7824, National Institute of Standards and Technology, 2011.

[23] , A survey of hp-adaptive strategies for elliptic partial differential equations, Recent Advances in
Computational and Applied Mathematics (T. E. Simos, ed.), Springer, 2011, pp. 227–258.

[24] J. T. Oden and A. Patra, A parallel adaptive strategy for hp finite element computations, Comput.
Methods Appl. Mech. Engrg. 121 (1995), 449–470.

[25] J. T. Oden, A. Patra, and Y. Feng, An hp adaptive strategy, Adaptive Multilevel and Hierarchical
Computational Strategies (A. K. Noor, ed.), vol. 157, ASME Publication, 1992, pp. 23–46.

[26] A. Patra, private communication.

[27] A. Patra and A. Gupta, A systematic strategy for simultaneous adaptive hp finite element mesh modi-
fication using nonlinear programming, Comput. Methods Appl. Mech. Engrg. 190 (2001), 3797–3818.

[28] W. Rachowicz, J. T. Oden, and L. Demkowicz, Toward a universal h-p adaptive finite element strategy,
Part 3. Design of h-p meshes, Comput. Methods Appl. Mech. Engrg. 77 (1989), 181–212.

[29] A. Schmidt and K. G. Siebert, a posteriori estimators for the h−p version of the finite element method
in 1D, Appl. Numer. Math. 35 (2000), 43–66.
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